Есть ли у плоских червей регенерация

Планария — модельный объект для изучения регенерации у многоклеточных • Новости науки

Есть ли у плоских червей регенерация

Исследование стволовых клеток плоского червя планарии позволило ученым из MIT доказать, что некоторые клетки взрослого червя, так называемые необласты, сохраняют плюрипотентность. Иными словами, они способны давать генерации любых типов клеток, а не только клеток определенного типа ткани.

У всех остальных групп животных плюрипотентными бывают только клетки ранних зародышевых стадий, но никак не взрослых организмов. Экспериментально было показано, что животное может полностью регенерировать, имея лишь одну живую стволовую клетку. Кроме того, продолжается расшифровка генетических каскадов, определяющих передне-заднюю полярность тела планарии.

По всей видимости, эти регуляторные каскады являются одними из самых базовых механизмов формирования тела многоклеточных животных.

Регенерация — восстановление утерянных или поврежденных тканей — одна из важнейших функций тканей многоклеточных организмов, будь то беспозвоночное животное или человек.

Естественно, для людей гораздо важнее уяснить, как происходит регенерация в тканях человека — ведь это путь к быстрому заживлению ран или даже реконструированию утраченных участков тех или иных тканей или органов.

Однако до массового практического использования этих важнейших в медицинском отношении сведений еще далеко. Пока же ученые пытаются выстроить механизм — генетический и физиологический — регенерации тканей.

И наилучшим образом здесь подходят простейшие модельные организмы, такие как плоские черви планарии. Давно известна их поистине фантастическая способность к восстановлению тела даже из небольшого оставшегося кусочка (здесь можно посмотреть превосходные картинки по регенерации планарий).

Именно планарии и стали объектом нового исследования механизмов регенерации. Под руководством Питера Реддиена (Peter Reddien) из Массачусетского технологического института (MIT, Кембридж, США) были выполнены два взаимодополняющих исследования.

Первое посвящено динамике деления так называемых необластов — клеток, из которых у планарии формируются все остальные типы клеток и которые сохраняют способность к делению на протяжении всей жизни червя. То есть необласты можно рассматривать как аналог стволовых клеток.

В другой работе разобран процесс регенерации переднего и заднего концов тела планарии. Здесь акцент сделан на биохимических механизмах, регулирующих «решение» ткани, какой из концов тела отращивать — хвост или голову.

Нужно отметить, что в мире животных с отращиванием новых хвостов справляются многие группы животных, а вот с отращиванием головы — почти никто. Так что планария в этом отношении — выдающийся гений.

Итак, необласты. В теле планарии имеется около 30 различных типов клеток, составляющие энто- экто- и мезодерму; необласты — лишь один из них.

Необласты распределены более или менее равномерно по всему телу, несколько больше их сконцентрировано в переднем конце тела впереди глотки. Перед исследователями стоял вопрос: являются ли необласты плюрипотентными или мультипотентными.

Первое означает способность генерировать любые типы клеток, второе — только клетки того или иного органа или ткани. Так, клетки бластулы являются плюрипотентными — из них формируется весь организм со всеми своими специализированными клетками; а клетки, например, костного мозга — мультипотентными.

Из них формируются все различные клетки крови, но не других тканей.

Если необласты — это пример плюрипотентных клеток, функционирующих на протяжении всей жизни взрослого животного, то планария превращается в объект первостепенной важности для изучения всех вопросов, связанных со стволовыми клетками, — своего рода муха дрозофила или E.

 coli для науки о стволовых клетках. Если же необласты — это мультипотентные клетки, то планария — всего лишь один из удобных, но весьма многочисленных объектов для исследования биологии развития. Ученым удалось доказать, что необласты — это всё же плюрипотентные клетки, сохраняющие способность к любой дифференциации на протяжении взрослой жизни.

https://www.youtube.com/watch?v=fhOzKpyQY9g

Чтобы это доказать, ученые отслеживали динамику деления необластов после облучения смертельными дозами ионизирующей радиации.

Клетки необластов и только они экспрессируют ген smedwi-1 (Schmidtea mediterranea — таково название планарии, взятой исследователями, и первые буквы гена, работающего в необластах, повторяют начальные буквы видового и родового названия); чтобы «увидеть» клетки необластов, ученые отмечали продукты экспрессии именно этого гена.

Большая часть необластов перестает работать (то есть smedwi-1 перестает экспрессироваться ) после облучения дозой 500 рад, при обработке дозой 6000 рад умирают все необласты. Ученые использовали дозу 1750 рад, чтобы оставить минимальную, но не нулевую вероятность необластического восстановления.

Как показали эксперименты, некоторое число необластов действительно выживали после облучения такой дозой и начинали делиться. Они были расположены на брюшной стороне животного. На 4-й день после облучения у 22% животных появляются следы работы одного-двух необластов, а через неделю уже можно видеть целые кластеры необластов.

Около 16% животных имеют один кластер, а 4% — по два кластера. С течением времени число клеток в кластере увеличивалось экспоненциально (неограниченный рост), и на 20-й день планария уже была полностью обеспечена этими живительными клетками — их была уже тысяча. Число самих кластеров при этом не увеличивается. Следовательно все необласты были потомками клеток — родоначальниц кластеров, а не других выживших клеток тела.

Ученые проследили и дальнейшую судьбу колоний необластов. Они в результате дали предшественников различных типов клеток, в частности нейронов и клеток кишечника. Это было доказано демонстрацией экспрессии генов, специфических для этих типов клеток.

Это означает, что необласты способны специализироваться в любом направлении — и в клетки кишечника, и в нервные клетки.

Трех необластов, например, всегда достаточно, чтобы восстановить головной отдел червя, восстанавливаются даже глаза-фоторецепторы на головном конце.

Был проделан также исключительно изящный эксперимент по оживлению облученного червя с помощью трансплантации в отмирающую ткань одного единственного необласта. Планарию облучили смертельной дозой в 6000 рад, после чего погибли все необласты и началась дегенерация тканей.

Дегенерация тканей у планарий происходит от головного конца к хвостовому, именно это и наблюдали исследователи в эксперименте после облучения. Через 6 недель после облучения погибают все без исключения планарии.

Но если облученному червю пересадить один (один!) необласт, то и через 7 недель он не погибнет. И более того, ткани у него начнут регенерацию. Через 8 недель регенерация закончится: планария выжила, сформировались глотка, глаза…

Какие клетки послужили источником обновления? Это можно проверить: исследователи протестировали некоторые гены донора трансплантированного необласта и аналогичные гены у счастливо спасенной планарии. Эти гены оказались одинаковыми.

Это означает, что единственный пересаженный необласт дал начало всем клеткам выжившего червя. Ученые получили живой клон. Этот клон мог размножаться бесполым путем. Таким образом, эксперимент по трансплантации служит превосходным доказательством плюрипотентности необластов.

Теперь, положим, червь имеет здоровые необласты, может легко восстановить утраченные части тела (или даже полностью обновить мертвые ткани), но как клетки узнают, в каком направлении им специализироваться? Естественно, существует множество механизмов, действующих здесь и сейчас, обусловленных непосредственным биохимическим окружением формирующейся клетки.

Но это лишь общий принцип, конкретика остается чаще всего неизвестной. Для планарии удалось показать, как клетки узнают, где передний, а где задний отдел. Иными словами, ученые выяснили, какие биохимические команды указывают клеткам, специализироваться им в передний или в задний отдел тела, отращивать голову или хвост.

В процессе регенерации тканей включается совершенно определенный генно-регуляторный каскад, запускаемый экспрессией гена wnt1. Он через посредничество специфических поверхностных белков регулирует количество бета-катенина, контролирующего экспрессию ядерных генов.

Экспрессия wnt1 отслежена по краям разрезов, будь они в переднем или заднем конце животного, обращены вперед или назад.

Однако ген notum экспрессируется только с того края надреза (раны), который направлен вперед, к головному концу. Аналог гена notum известен у дрозофилы; у мух он играет важную роль в эмбриональном развитии, подавляя экспрессию wnt, у млекопитающих этот ген работает, контролируя процесс роста.

У планарии, как выяснилось, notum также разрушает поверхностные белки, с которыми связывается wnt1, и таким способом ингибирует его работу. В результате там, где экспрессируется notum, формируется голова с глазами-фоторецепторами, а там, где он не экспрессируется, вырастает хвост.

Так что notum каким-то образом — напрямую или косвенно — связан с определением передне-задней полярности тела.

Вот превосходные эксперименты, в которых ученые манипулировали работой notum. В данном случае использовалось ингибирование при помощи РНК-интерференции. Если подавить экспрессию wnt1, то у животного не вырастет хвост, а вместо этого появится лишняя голова (левая фотография).

Если подавить экспрессию notum, то примерно у половины животных вместо головы вырастет хвост (средняя фотография), а у второй половины отрастет дефектная голова с одним фоторецептором вместо двух, и в этом дефектном переднем отделе появятся характерные для хвостового отдела биохимические маркеры и морфологические черты. Участие в рабочей схеме бета-катенина подтверждается двойным ингибированием бета-катенина и notum. В этом случае регенерация идет так, как если бы ингибировали только бета-катенин: отрастает голова с фоторецепторами (самая правая фотография).

Нужно отметить, что определение передне-задней полярности тела даже у таких простых животных, как планарии, осуществляется гораздо более сложной и запутанной системой каскадных регуляций, чем обратная связь через notum.

Так, вырастить планарию с двумя головами или двумя хвостами можно с помощью ингибирования и другого гена — Smed-prep. Так что и этот ген вместе со всем своим каскадом подключен к совместному решению, где хвост, а где голова.

Биохимическая схема определения передне-задней полярности тела животных, по всей видимости, достаточно единообразна для многоклеточных животных. Ученые продемонстрировали ее работу у плоского червя, подчеркнув высокое сходство с мухами и млекопитающими.

Но биохимические механизмы регенерации, так же как и цитологические механизмы, гораздо эффективнее изучать на плоских червях, чем на млекопитающих.

Поэтому у белой планарии, по-видимому, большое научное будущее: она станет превосходным модельным объектом для исследования базовых принципов восстановления клеток и тканей у многоклеточных.

Источники:
1) Daniel E. Wagner, Irving E. Wang, Peter W. Reddien. Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration // Science. 2011. V. 332. P. 811–816. Doi: 10.1126/science.

1203983.
2) Christian P. Petersen, Peter W. Reddien. Polarized notum Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration // Science. 2011. V. 332. P. 852–855. Doi: 10.1126/science.1202143.

Елена Наймарк

Источник: https://elementy.ru/news/431577

Биология. Тип Плоские черви — описание

Есть ли у плоских червей регенерация

Тип Плоские черви

К типу Плоские черви относится более 12000 ви­дов двусторонне-симметричных животных. Плоские черви — трёхслойные животные: из оплодотворённого яйца у них формируется три слоя клеток — эктодер­ма, энтодерма и мезодерма, из которых впоследствии развиваются органы животного.

Примеры плоских червей: белая планария, печё­ночный сосальщик, бычий цепень.

Строение и жизнедеятельность Свободноживущие плоские черви имеют плоскую листовидную форму тела, паразитические формы — плоскую лентовидную, их тело снабжено приспосо­блениями для прикрепления внутри органов человека и животных — присосками или крючочками.

Покровы. Покровы свободноживущих плоских червей образованы удлинёнными эпителиальными клетками с ресничками. Под покровным эпителием лежит несколько слоёв мышц (продольных, попереч­ных и спинно-брюшных). Опорой для мышц служит паренхима — рыхлая масса мелких клеток, которая формируется из мезодермы. Покровы и мышцы обра­зуют кожно-мускульный мешок.

Движение. Для передвижения свободноживущие плоские черви используют и реснички, и мышцы. С помощью ресничек черви скользят по слизи, выде­ляемой кожными железами. При сокращении кожно­мускульного мешка тело плоских червей изгибается в разных направлениях.

Питание. Свободноживущие плоские черви — хищники. Ротовое отверстие расположено на брюшной стороне тела. Большинство свободножи­вущих плоских червей, а также некоторые парази­тические формы имеют разветвлённый кишечник.

Пищеварение — внутриполостное, а также и вну­триклеточное, происходит под действием пищева­рительного сока, выделяемого железистыми клетка­ми. Непереваренные остатки выводятся наружу че­рез рот.

Некоторые паразиты не имеют кишечника, а всасывают уже переваренные питательные вещест­ва из кишечника хозяина всей поверхностью тела.

Дыхание. Дыхание свободноживущих плоских чер­вей происходит всей поверхностью тела растворённым в воде кислородом. Паразитические формы исполь­зуют другой способ расщепления органических ве­ществ — анаэробное, или бескислородное, дыхание. Такой вид дыхания даёт меньший энергетический вы­ход, поэтому паразитам требуется значительно боль­ше пищи, чем свободноживущим формам.

Выделение. Продукты обмена выделяются из орга­низма плоских червей через выделительные каналь­цы.-, каждый заканчивается в паренхиме ресничной клеткой. Реснички подвигают продукты выделения к каналам, которые сливаются в более крупные ка­нальцы, а они открываются наружу двумя отверстия­ми в задней части тела.

Нервная система и органы чувств. У свободноживу­щих плоских червей-хищников на переднем конце тела имеются органы чувств: простые глаза, щупальца (ор­ганы осязания), имеется орган равновесия. Нервная система состоит из двух парных головных нервных узлов, от которых отходят продольные нервные ство­лы, соединённые кольцевыми перемычками.

От них отходят многочисленные тонкие нервные отростки ко всем частям тела, а органы чувств связаны с голов­ными узлами. По телу червей расположены реснички, с помощью которых животное воспринимает токи воды и анализирует состав среды.

У паразитических форм нервная система развита слабо, органы чувств пред­ставлены отдельными чувствительными клетками.

Регенерация. Плоские черви имеют способность к регенерации. Планария способна очень долго голо­дать, используя в это время запасы собственного орга­низма и постепенно уменьшаясь в размерах. Получив пищу, организм быстро восстанавливает свои разме­ры.

Размножение. Плоские черви — гермафродиты. Одна и та же особь имеет женские половые органы (яичники) и мужские половые органы (семенники). Оплодотворение перекрёстное. Свободноживущие формы откладывают во внешнюю среду коконы с оплодотворёнными яйцами. У паразитических форм сложная система органов размножения и раз­вития.

Образ жизни и значение в природе

Тип Плоские черви представлен тремя основны­ми классами — Ресничные черви, Ленточные черви и Сосальщики.

Ресничные черви — свободноживущие хищники, характерным представителем которых является бе­лая планария, обитатель пресных водоёмов; она пол­зает по подводным предметам и охотится на доволь­но крупную добычу. Её рот расположен посередине брюшной стороны тела. Изо рта выворачивается длин­ная мускулистая глотка для заглатывания мелких беспозвоночных животных.

Все представители класса Ленточные черви — па­разиты, живущие в кишечнике млекопитающих, вса­сывая полупереваренную пищу всей поверхностью тела. Тело этих червей делится на головку, шейку и многочисленные членики.

Ленточные черви — опа­сные паразиты, нарушающие процессы пищеварения в организме хозяина и отравляющие его своими выде­лениями. Самые распространённые среди них — бы­чий и свиной цепни, эхинококк.

Ленточные черви имеют сложный цикл развития, в котором присутст­вует окончательный хозяин (человек) — в нём живёт и размножается половым путём зрелый паразит, и промежуточный хозяин — в нём паразит живёт на стадии личинки.

Ещё один класс плоских червей — паразитов жи­вотных и человека — Сосальщики, имеющие листо­видную или веретеновидную формы тела. Органы чувств отсутствуют, а покровы тела имеют специ­альную защиту от воздействия пищеварительных соков хозяи­на. Удерживаться в теле хозяи­на червям помогают присоски.

Сосальщики сохраняют пище­варительную систему, питаются тканями хозяина, которые загла­тывают с помощью мускулистой глотки.

Все паразитические черви очень плодовиты. Жизненный цикл со­сальщиков очень сложный. Рас­пространённый паразит челове­ка — печёночный сосальщик, про­межуточным хозяином которого является моллюск прудовик.

На этой странице искали :

  • 1 Тип Плоские черви Питание Дыхание Выделение Нервная система Размножение Классы и их представители

Сохрани к себе на стену!

Источник: http://vsesochineniya.ru/biologiya-tip-ploskie-chervi-opisanie.html

РЕГЕНЕРАЦИЯ

Есть ли у плоских червей регенерация
статьи

РЕГЕНЕРАЦИЯ, восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого-нибудь органа или части организма.

Однако помимо этого в каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи.

Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такую регенерацию, обычно не связанную с повреждениями или утратой, называют физиологической.

Регенерацию, происходящую после повреждения или утраты какой-либо части тела, называют репаративной. Здесь мы рассмотрим только репаративную регенерацию.

Репаративная регенерация может быть типичной или атипичной. При типичной регенерации утраченная часть замещается путем развития точно такой же части.

Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Регенерация у животных

Способность к регенерации широко распространена среди животных. Вообще говоря, низшие животные чаще способны к регенерации, чем более сложные высокоорганизованные формы.

Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным.

Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении.

Так, у дождевого червя из небольшого кусочка тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит.

Многие беспозвоночные способны к регенерации значительной части тела. У губок, гидроидных полипов, плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок.

Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито.

Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент.

Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным.

Ленточный червь, длина которого во много раз превышает его ширину, способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации 200 000 новых червей. Из одного луча морской звезды может регенерировать целая звезда.

Моллюски, членистоногие и позвоночные не способны регенерировать целую особь из одного фрагмента, однако у многих из них происходит восстановление утраченного органа. Некоторые в случае необходимости прибегают к аутотомии.

Птицы и млекопитающие как эволюционно наиболее продвинутые животные меньше других способны к регенерации. У птиц возможно замещение перьев и некоторых частей клюва.

Млекопитающие могут восстанавливать покров, когти и частично печень; они способны также к заживлению ран, а олени – к отращиванию новых рогов взамен сброшенных.

Процессы регенерации

В регенерации у животных участвуют два процесса: эпиморфоз и морфаллаксис. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток. Эти клетки, похожие на эмбриональные, накапливаются под пораненным эпидермисом у поверхности разреза, где они образуют зачаток, или бластему.

Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. При морфаллаксисе другие ткани тела или органа непосредственно преобразуются в структуры недостающей части.

У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно участвуют и эпиморфоз, и морфаллаксис.

Регенерация путем образования бластемы широко распространена у беспозвоночных и играет особенно важную роль в регенерации органов у амфибий. Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е.

клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена при ампутации, «дедифференцируются» в области разреза, т.е.

дезинтегрируются и превращаются в отдельные бластемные клетки.

Таким образом, согласно теории «резервных клеток», бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории «дедифференцированной ткани», бластемные клетки происходят из клеток поврежденных тканей.

В подтверждение как одной, так и другой теории имеется достаточно данных. Например, у планарий резервные клетки более чувствительны к рентгеновским лучам, чем клетки дифференцированной ткани; поэтому их можно разрушить, строго дозируя облучение, чтобы не повредить нормальные ткани планарии. Облученные таким образом особи выживают, но утрачивают способность к регенерации.

Однако если только переднюю половину тела планарии подвергнуть облучению, а затем разрезать, то регенерация происходит, хотя и с некоторой задержкой. Задержка свидетельствует о том, что бластема образуется из резервных клеток, мигрирующих на поверхность разреза из необлученной половины тела.

Миграцию этих резервных клеток по облученной части тела можно наблюдать под микроскопом.

Сходные эксперименты показали, что у тритона регенерация конечностей происходит за счет бластемных клеток местного происхождения, т.е. за счет дедифференцировки поврежденных тканей культи.

Если, например, облучить всю личинку тритона, за исключением, скажем, правой передней конечности, а затем ампутировать эту конечность на уровне предплечья, то у животного отрастает новая передняя конечность.

Очевидно, что необходимые для этого бластемные клетки поступают именно из культи передней конечности, так как все остальное тело подверглось облучению.

Более того, регенерация происходит даже в том случае, если облучают всю личинку, за исключением участка шириной 1 мм на правой передней лапке, а затем последнюю ампутируют, производя разрез через этот необлученный участок. В этом случае совершенно очевидно, что бластемные клетки поступают с поверхности разреза, поскольку все тело, включая правую переднюю лапку, было лишено способности к регенерации.

Описанные процессы анализировали с применением современных методов. Электронный микроскоп позволяет наблюдать изменения в поврежденных и регенерирующих тканях во всех деталях.

Созданы красители, выявляющие определенные химические вещества, содержащиеся в клетках и тканях.

Гистохимические методы (с применением красителей) дают возможность судить о биохимических процессах, происходящих при регенерации органов и тканей.

Полярность

Одна из самых загадочных проблем в биологии – происхождение полярности у организмов. Из шаровидного яйца лягушки развивается головастик, у которого с самого начала на одном конце тела находится голова с головным мозгом, глазами и ртом, а на другом – хвост.

Подобным же образом, если разрезать тело планарии на отдельные фрагменты, на одном конце каждого фрагмента развивается голова, а на другой – хвост. При этом голова всегда образуется на переднем конце фрагмента.

Эксперименты ясно показывают, что у планарии существует градиент метаболической (биохимической) активности, проходящий по передне-задней оси ее тела; при этом наивысшей активностью обладает самый передний конец тела, а в направлении к заднему концу активность постепенно снижается.

У любого животного голова всегда образуется на том конце фрагмента, где метаболическая активность выше. Если направление градиента метаболической активности в изолированном фрагменте планарии изменить на противоположное, то и формирование головы произойдет на противоположном конце фрагмента.

Градиент метаболической активности в теле планарий отражает существование какого-то более важного физико-химического градиента, природа которого пока неизвестна.

В регенерирующей конечности тритона полярность новообразуемой структуры, по-видимому, определяется сохранившейся культей.

По причинам, которые еще остаются неясными, в регенерирующем органе формируются только структуры, расположенные дистальнее раневой поверхности, а те, что расположены проксимальнее (ближе к телу), не регенерируют никогда.

Так, если ампутировать кисть тритона, а оставшуюся часть передней конечности вставить обрезанным концом в стенку тела и дать этому дистальному (отдаленному от тела) концу прижиться на новом, необычном для него месте, то последующая перерезка этой верхней конечности вблизи плеча (освобождающая ее от связи с плечом) приводит к регенерации конечности с полным набором дистальных структур. У такой конечности имеются на момент перерезки следующие части (начиная с запястья, слившегося со стенкой тела): запястье, предплечье, локоть и дистальная половина плеча; затем, в результате регенерации, появляются: еще одна дистальная половина плеча, локоть, предплечье, запястье и кисть. Таким образом, инвертированная (перевернутая) конечность регенерировала все части, расположенные дистальнее раневой поверхности. Это поразительное явление указывает на то, что ткани культи (в данном случае культи конечности) контролируют регенерацию органа. Задача дальнейших исследований – выяснить, какие именно факторы контролируют этот процесс, что стимулирует регенерацию и что заставляет клетки, обеспечивающие регенерацию, скапливаться на раневой поверхности. Некоторые ученые полагают, что поврежденные ткани выделяют какой-то химический «раневой фактор». Однако выделить химическое вещество, специфичное для ран, пока не удалось.

Регенерация у растений

Широкое распространение регенерации в царстве растений обусловлено сохранением у них меристем (тканей, состоящих из делящихся клеток) и недифференцированных тканей. В большинстве случаев регенерация у растений – это, в сущности, одна из форм вегетативного размножения.

Так, на кончике нормального стебля имеется верхушечная почка, обеспечивающая непрерывное образование новых листьев и рост стебля в длину в течение всей жизни данного растения.

Если отрезать эту почку и поддерживать ее во влажном состоянии, то из имеющихся в ней паренхимных клеток или из каллуса, образующегося на поверхности среза, часто развиваются новые корни; почка при этом продолжает расти и дает начало новому растению. То же самое происходит в природе, когда отламывается ветка.

Плети и столоны разделяются в результате отмирания старых участков (междоузлий). Таким же образом разделяются корневища ириса, волчьей стопы или папоротников, образуя новые растения.

Обычно клубни, например клубни картофеля, продолжают жить после отмирания подземного стебля, на котором они выросли; с наступлением нового вегетационного периода они могут дать начало собственным корням и побегам.

У луковичных растений, например у гиацинтов или тюльпанов, побеги формируются у основания чешуй луковицы и могут в свою очередь образовывать новые луковицы, которые в конечном счете дают корни и цветоносные стебли, т.е. становятся самостоятельными растениями. У некоторых лилейных воздушные луковички образуются в пазухах листьев, а у ряда папоротников на листьях вырастают выводковые почки; в какой-то момент они опадают на землю и возобновляют рост.

Корни менее способны к образованию новых частей, чем стебли. Клубню георгина для этого необходима почка, образующаяся у основания стебля; однако батат может дать начало новому растению из почки, образуемой корневой шишкой.

Листья тоже способны к регенерации. У некоторых видов папоротников, например у кривокучника (Camptosorus), листья сильно вытянуты и имеют вид длинных волосовидных образований, заканчивающихся меристемой.

Из этой меристемы развивается зародыш с зачаточными стеблем, корнями и листьями; если кончик листа родительского растения наклонится вниз и соприкоснется с землей или мхом, зачаток начинает расти. Новое растение отделяется от родительского после истощения этого волосовидного образования.

Листья суккулентного комнатного растения каланхое несут по краям хорошо развитые растеньица, которые легко отпадают. Новые побеги и корни формируются на поверхности листьев бегонии.

Специальные тельца, называемые зародышевыми почками, развиваются на листьях некоторых плауновых (Lycopodium) и печеночников (Marchantia); упав на землю, они укореняются и образуют новые зрелые растения.

Многие водоросли успешно размножаются, расчленяясь на фрагменты под ударами волн. См. также СИСТЕМАТИКА РАСТЕНИЙ.

Источник: https://www.krugosvet.ru/enc/biologiya/regeneratsiya

Тип плоские черви

Есть ли у плоских червей регенерация

Плоские черви – древняя группа многоклеточных двусторонне-симметричных животных. На настоящий момент тип плоские черви включает около 18 тысяч видов. Представлен тремя классами: ресничные черви – наиболее высокоорганизованные, свободноживущие формы, ленточные черви и сосальщики – ведут паразитический образ жизни.

Паразитические представители данного типа имеют медицинское значение, вызывают различные заболевания у человека и животных.

Их жизненные циклы сложны, но осознав их, вам легко будет сделать вывод о методах профилактики гельминтозов (заболеваний, вызванных гельминтами) и о способах заражения паразитом.

Рекомендую по мере изучения паразитов сосредотачиваться именно на их жизненных циклах, я уделю этой теме особое внимание.

Ароморфозы плоских червей

Чтобы отлично знать зоологию нужно помнить ароморфозы. Это те прогрессивные черты, которые ставят плоских червей на более высокий уровень организации, черты, которые мы не найдем у предыдущего, изученного нами типа Кишечнополостные.

  • Двусторонняя симметрия
  • Плоские черви – двусторонне-симметричные (билатерально симметричные) животные, у которых органы расположены слева и справа от срединной плоскости, при этом возможны несущественные отличия во внешнем строении и расположении внутренних органов.

  • Кожно-мускульный мешок
  • У плоских червей впервые возникает кожно-мускульный мешок, который представляет собой единую систему покровных и мышечных тканей.

  • Третий зародышевый листок – мезодерма
  • Плоские черви могут полноправно называться трехслойными животными. В отличие от кишечнополостных (двухслойных, у которых есть только эктодерма и энтодерма), у плоских червей, между эктодермой и энтодермой возникает третий зародышевый листок – мезодерма (от греч. mesos – средний + derma – кожа).

    Появление мезодермы приводит к развитию мышечного аппарата, который образует мышечный мешок, состоящий из нескольких слоев мышц.

    У плоских червей клетки наружного мышечного слоя (кольцевая мускулатура) расположены поперек передне-задней оси тела, клетки внутреннего мышечного слоя (продольная мускулатура) – вдоль передне-задней оси тела. Мышечные клетки также могут объединяться в косые и спинно-брюшные мышцы.

  • Появление переднего конца тела с комплексом органов чувств
  • Это очень важное приобретение для свободноживущих форм. Органы осязания, зрения, обоняния помогают лучше ориентироваться в пространстве, что позволяет совершать целенаправленные движения.

  • Нервная система лестничного типа
  • Лестничный тип нервной системы (ортогон), называемый также – стволовой тип, заключается в объединении нервных клеток в нервные стволы. Такая конфигурация напоминает лестницу, в связи с чем и называется – лестничная.

    Состоит из парных мозговых ганглиев (нервных узлов – от греч. ganglion – узел) от которых отходят два продольных нервных ствола (коннективы), соединяющиеся между собой поперечными нервными стволами (комиссурами).

    Головной отдел несколько обособляется за счет большей концентрации нервных клеток в мозговых ганглиях: постепенно начинается цефализация (от греч. kephalē – голова) – процесс обособления головы.

  • Выделительная система
  • У простейших и кишечнополостных выделение осуществлялось всей поверхностью тела. У плоских червей в этой области происходит колоссальный прорыв – впервые появляются специализированные органы выделения, называемые протонефридиями.

    Протонефридии представляют собой систему простых или ветвящихся канальцев эктодермального происхождения, расположенных в паренхиме (мезенхиме) или полости тела. Протонефридии объединяются в трубочки, открывающиеся порами на поверхности тела.

    Протонефридий состоит из большого числа ветвящихся канальцев, оканчивающихся клетками с просветом внутри. Если в этот просвет выступает много ресничек, то такая клетка называется пламенной (звездчатой, мерцательной). Реснички пламенной клетки колеблются, и это напоминает колебания пламени свечи, отсюда и название. Эти движения создают непрерывный ток жидкости.

    Протонефридии представляют собой каналы, слепо начинающиеся в мезенхиме от пламенных (звездчатых) клеток с ресничками, обращенными в полость канала. Каждая пламенная клетка захватывает из паренхимы (мезенхимы) жидкие продукты распада и транспортирует их в систему каналов.

    Мелкие выделительные каналы сливаются в большие, которые открываются на поверхности тела выделительными порами.

  • Половые железы
  • Мужские половые органы представлены семенниками, женские – яичниками.

    Оплодотворение внутреннее – сперматозоид и яйцеклетка сливаются внутри организма (гермафродита), в женских половых органах. Оплодотворение перекрестное – между двумя особями.

    У плоских червей впервые появляются специализированные органы размножения, которые относятся к наиболее сложно устроенным среди всех организмов царства животные.

    Мужская половая система включает один или несколько семенников, семяпровод и семяизвергательный канал. Женская половая система состоит из яичников, желточников, семяприемников, матки.

    У зиготы впервые появляется запас питательных веществ и скорлуповая оболочка.

    В желточниках накапливаются запасы питательных веществ, энергия которых используются развивающимися яйцеклетками. В скорлуповой железе (по-другому называется – оотип) происходит оплодотворение яйцеклетки сперматозоидом, после чего образовавшаяся зигота покрывается твердой оболочкой – скорлупой.

  • Дифференцировка пищеварительной системы
  • В пищеварительной системе выделяются передний и средний отделы. Передний отдел представлен ртом, продолжающимся в глотку. Средний отдел представлен слепо заканчивающимися каналами, доставляющими питательные вещества к органам и тканям.

Общая характеристика

  • Опорно-двигательная система, покровы тела
  • Тело листовидное, вытянутое в длину. Имеется кожно-мускульный мешок, образованный однослойным эпителием и несколькими слоями мышечных волокон.

    Клетки эпителия выделяют слизь, снижающую трение и облегчающую движения. У свободноживущих имеется 3 слоя мышц: кольцевые, продольные и косые (диагональные). У паразитических особей выделяют только 2 слоя мышц: кольцевые и продольные.

    Также у плоских червей имеются спинно-брюшные мышцы. Сокращение мышц изменяет форму тела.

    У свободноживущих форм покровы тела представлены однослойным эпителием, чего не скажешь про паразитические формы.

    Паразиты в организме-хозяине часто сталкиваются с агрессивной средой желудочных и кишечных соков, в которых они могли бы перевариться, не будь у них – тегумента. Тегумент – это плотный, особый вид эпителия, выполняющий барьерную и секреторную функции.

    Он отделен от нижележащих мышц базальной пластинкой. Именно тегумент препятствует перевариванию червя, благодаря чему он может жить в организме человека и животных долгие годы.

    Особо хочу отметить, что во многих устаревших руководствах написано вместо тегумента – “кутикула”. На данный момент с помощью электронного микроскопа установлено, что наружный покров является именно тегументом – слоем слипшихся между собой клеток, а не кутикулой. Эти ошибки будут кочевать по пособиям и руководствам еще долгие годы, поэтому, к сожалению, приходится уделять им внимание.

    Полость тела у плоских червей отсутствует. Внутри находится паренхима мезодермального происхождения (мезенхима) – рыхлая соединительная ткань, заполняющая промежутки между органами. Выполняет опорную и запасающую функции, участвует в обмене веществ. При голодании организма паренхима постепенно истончается.

    Плоские черви обладают выраженной способности к регенерации. Они могут восстановить 6/7 утраченных частей своего тела.

  • Пищеварительная система
  • Замкнутая, анальное отверстие отсутствует. Непереваренные остатки пищи удаляются через ротовое отверстие. Имеется дифференцировка пищеварительной системы на передней и средний отделы.

    Отметьте, что у представителей класса ленточные черви пищеварительная система отсутствует полностью, они всасывают расщепленные вещества всей поверхностью тела.

  • Дыхание
  • У свободноживущих форм дыхание аэробное, дышат они всей поверхностью тела растворенным в воде кислородом. У паразитических форм дыхание анаэробное (бескислородное), это менее продуктивный тип дыхания, но адаптированный для условий их обитания, в частности кишечника, где по большей части среда бескислородная.

  • Выделительная систем
  • Специализированные органы выделения – протонефридии.

  • Нервная система
  • Нервная система лестничного (ортогонального) типа.

  • Половая система
  • Подавляющее большинство плоских червей – гермафродиты (обоеполые), то есть на одном организме находятся и мужские, и женские половые органы.

    Половая система устроена сложно. Мужские половые органы представлены семенниками, семяпроводом и семяизвергательным каналом. Женская половая система включает в себя влагалище, яичники, яйцеводы, протоки которых впадают в оотип (скорлуповую железу), слепо замкнутой матки.

    Запомните, что такое прогрессивное развитие половой системы в целом характерно для паразитов. Их основная задача – размножиться, заразить другой организм, а вероятность такого события относительно небольшая.

    И, чтобы ее увеличить, они выделяют огромное количество яиц. В матке одного зрелого членика бычьего цепня в среднем содержится около 150 тысяч яиц, в день отделяется 6-8 члеников – около миллиона яиц.

    За год бычий цепень выделяет около 300-500 миллионов яиц.

Смена хозяев в жизненном цикле

В качестве приспособления к паразитическому образу жизни у плоских червей в жизненном цикле выработалась смена хозяев. У сосальщиков наблюдается сложное чередование поколений.

Изучая жизненные циклы, вы часто будете сталкиваться с экологическим понятием “хозяин”. Хозяин – организм, используемый паразитом для обитания, размножения, собственной защиты. Выделяют несколько типов хозяев:

  • Основной
  • Вид, на котором обычно паразитирует данная категория паразитов. В организме основного хозяина происходит половое размножение паразита.

  • Промежуточный
  • Вид, в котором паразит обитает в личиночном виде. В организме промежуточного хозяина происходит бесполое размножение паразита.

  • Дополнительный
  • Вид, обычно не страдающий от нападения паразита, но заражаемый им чаще всего при массовом размножении паразитов.

  • Тупиковый
  • Вид, случайно заражающийся данной категорией паразитов. Паразиты, оказавшись в таком организме, чаще всего не имеют возможности для размножения и продолжения своего рода.

    Человек для эхинококка является тупиковым хозяином, так как человека никто не ест.

Источник: https://studarium.ru/article/47

Терапевт Воробьёв
Добавить комментарий